Capacitancia		
Capacitancia con dieléctrico	$C = kC_0$	
Capacitancia	$C = \frac{Q}{\Delta V}$	
Capacitor de placas paralelas	$C = \frac{\epsilon_0 A}{d}$	
Capacitores en serie	$\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2}$	
Capacitores en paralelo	$c_{eq} = c_1 + c_2$	
Energía en un capacitor	$U = \frac{Q^2}{2C} = \frac{1}{2}Q \Delta V = \frac{1}{2}C \Delta V^2$	

Corriente y resistencia	
Corriente	$i = \frac{q}{t}$
Resistencia	$R = \frac{\Delta V}{i}$
Resistividad	$R = \rho_R \frac{\ell}{A}$
Potencia Eléctrica	$P = i \Delta V = i^2 R = \frac{\Delta V^2}{R}$

Circuitos de corriente Continua	
Resistores en paralelo	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$
Resistores en serie	$R_{eq} = R_1 + R_2 + \cdots R_n$
Leyes de Kirchhoff	$\Sigma i_{union} = 0$ $\Sigma \Delta V_{espira} = 0$
Circuito RC	$q(t) = Q(1 - e^{-t/RC})$ $i(t) = \frac{dq}{dt}$

Campos magnéticos		
Fuerza sobre una partícula	$\left ec{F}_{B} ight = qvB$ sen $ heta$	
Momento magnético	$\mu_{bobina} = niA$	
Momento de torsión magnético	$ au = \mu_{bobina} B$	
Campo magnético en la vecindad de un cable	$\frac{\mu_0 I}{4\pi a} (\operatorname{sen} \theta_1 - \operatorname{sen} \theta_2)$	
Fuerza magnética entre cables paralelos	$F_B = \frac{\mu_0 I_1 I_2}{2\pi a} \ell$	
Ley de Ampere	$\mu_0 I = \int B ds$	
Campo Magnético en un solenoide	$\left ec{B} ight = \mu_0 n I$	
Flujo Magnético	$\Phi_B = \oint \vec{B} dA$	
Ley de Gauss en el Magnetismo	$\oint \vec{B} dA = 0$	
Ley de Faraday	$\mathcal{E}=-rac{d\Phi_{B}}{dt}$	

Tabla de factores de conversión			
Lo	ngitud	Peso	
1 milla	1.609 km	1 N	4.448 libras
1 milla	5280 pie	1 N	10000 dinas
1 km	1000 m	1 Kilopondio	9.8 Newton
1 m	100 cm	E	nergía
1 m	1000 mm	1 Libra-pie	1.356 Joules
1 m	3.28 pie	1 Kilocaloría	4186 Joules
1 pie	0.3048 cm	1 Electronvoltio	$1.602x10^{-19}$ Joules
1 pie	12 pulg	Potencia	
1 cm	2.54 pulg	1 HP	745.7 Watt
1 yarda	0.9144 m	Volumen	
Ti	empo	1 galón	3.785 litros
1 día	24 h	$1 m^3$	1000 litros
1 hora	60 min	Temperatura	
1 hora	3600 s	°C	$\frac{5}{9}(^{\circ}F - 32)$
N	Aasa	°F $\frac{9}{5}$ °C + 32	
1 slug	14.59 Kg	K	°C + 273.15
1 Kg	2.2 lb masa	Presión	
1000 g	1 kg	1 atm	101325 Pa
		1 PSI	6894.76 Pa
		1 Bar	100000 Pa

Constantes Comunes		
Velocidad de la luz	С	3×10 ⁸ m/s
Aceleración de la gravedad	g	$-9.8 m/s^2$
Constante gravitacional universal	G	$6.67 \times 10^{-11} Nm^2/kg^2$
Presión Atmosférica	P_{atm}	101325 Pa
Densidad del Agua	ρ_{H2O}	$1000 kg/m^3$
Masa de la tierra	M_T	$5.98 \times 10^{24} \ kg$
Número de Avogadro	N _A	6.022×10 ²³ p./mol
Constante de Coulomb	K_e	8.987×10 ⁹ Nm ² /C ²
Constante dieléctrica	ϵ_0	$8.854 \times 10^{-12} C^2/Nm^2$
Masa del electrón	m_e	$9.109 \times 10^{-31} kg$
Masa del protón	m_p	$1.673 \times 10^{-27} \ kg$
Masa del Neutrón	m_n	$1.675 \times 10^{-27} \ kg$
Carga elemental	е	1.602×10 ⁻¹⁹ C
Permeabilidad del espacio libre	μ_0	$4\pi \times 10^{-7} Tm/A$

Realizado por: Revisado por: Ing. Luis Ernesto Aguilar Dr Eddie Flores Ing. Edgar Coyoy

FORMULARIO FÍSICA 2019

Sistemas de medida

Sistema internacional (S.I.)		
Longitud	masa	tiempo
metro (m)	kilogramo (kg)	Segundo (s)
Corriente Eléctrica	Temperatura Cantidad de sustancia	
Amperio (A)	Kelvin (K)	Mol (mol)
Sistema inglés		
Longitud	Longitud masa tiempo	
Pie (P)	Slug (sg)	Segundo (s)

Prefijos para potencias de diez		
Potencia	Prefijo	Abreviatura
10 ¹²	Tera	T
10 ⁹	Giga	G
10 ⁶	Mega	М
10^{3}	Kilo	K
10-2	centi	С
10-3	mili	m
10-6	micro	μ
10-9	nano	n
10 ⁻¹²	pico	p

Velocidad o rapidez constante

$$\vec{v} = \frac{d}{t}$$

Movimiento rectilíneo uniformemente acelerado

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2a\Delta x$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2 \qquad \qquad \Delta x = \frac{1}{2} t (v + v_0)$$

$$\Delta x = \frac{1}{2}t(v + v_0)$$

Movimiento rectilíneo con aceleración variable

$$\frac{d\vec{v}}{dt} = \vec{c}$$

$$\frac{d\vec{s}}{dt} = i$$

$$\frac{d\vec{v}}{dt} = \vec{a} \qquad \qquad \frac{d\vec{s}}{dt} = \vec{v} \qquad \qquad \int \vec{v} \, dv = \int \vec{a} \, ds$$

Movimiento parabólico		
Altura máxima	$H = \frac{{v_0}^2 \operatorname{sen}^2 \theta}{2g}$	
Alcance máximo	$R = \frac{{v_0}^2 \sin 2\theta}{g}$	
Tiempo de vuelo	$t_{vuelo} = \frac{2v_0 \sin \theta}{g}$	

Segunda Ley de Newton	
Fuerza	$\vec{F} = m\vec{a}$
Fuerza de un resorte	$F_k = k\Delta x$
Fricción Cinética	$F_k = \mu_k N$
Fricción Estática	$F_{s} = \mu_{s}N$
Aceleración de un sistema	$a = \frac{\sum F_{a favor} - \sum F_{contra}}{\sum m}$

Trabajo, Potencia y Energía	
Trabajo	$W = Fd\cos\theta$
Potencia promedio	$P = \frac{W}{t}$
Potencia Instantánea	P = Fv
Teorema del trabajo y la energía	$\Delta E = W$
Energía cinética	$K = \frac{1}{2}mv^2$
Energía potencial gravitacional	U = mgh
Energía potencial elástica	$U_E = \frac{1}{2}k\Delta x^2$
Conservación de la energía	$E_0 = E_f$
Fuerzas no conservativas	$E_0 - W = E_f$

Momento lineal e impulso angular		
Momento lineal	$ec{p}=mec{v}$	
Impulso	$\Delta p = F \Delta t$	
Conservación del momento lineal	$\Delta p = cte$	

Movimiento circular uniforme	
Velocidad angular	$\vec{\omega} = \frac{\vec{v}}{r}$
Frecuencia	$f = \frac{\omega}{2\pi}$
Periodo	$T = \frac{2\pi}{\omega}$
Aceleración centrípeta	$a_c = \frac{{v_t}^2}{r} = \omega^2 r$
Fuerza centrípeta	$F_c = ma_c$

Movimiento circular uniformemente acelerado

$$\vec{\omega} = \vec{\omega_0} + \vec{\alpha}t$$

$$\vec{\omega} = \vec{\omega_0} + \vec{\alpha}t \qquad \qquad \vec{\omega}^2 = \vec{\omega_0}^2 + 2\vec{\alpha}\Delta\vec{\theta}$$

$$\Delta \vec{\theta} = \overrightarrow{\omega_0} t + \frac{1}{2} \vec{\alpha} t$$

$$\Delta \vec{\theta} = \overrightarrow{\omega_0} t + \frac{1}{2} \vec{\alpha} t^2 \qquad \qquad \Delta \vec{\theta} = \frac{1}{2} t (\vec{\omega} + \overrightarrow{\omega_0})$$

$$\Delta \vec{s} = r \Delta \theta$$

$$\vec{v} = r \vec{\omega}$$

$$\vec{a}=r\;\vec{\alpha}$$

Movimiento circular con aceleración variable

$$\frac{d\vec{\omega}}{dt} = \vec{\alpha}$$

$$\frac{d\theta}{dt} = \bar{c}$$

$$\frac{d\vec{\omega}}{dt} = \vec{\alpha} \qquad \qquad \frac{d\vec{\theta}}{dt} = \vec{\omega} \qquad \qquad \int \vec{\omega} \, d\omega = \int \vec{\alpha} \, d\theta$$

Dinámica del movimiento circular I	
Momento de inercia rotacional	$I = mr^2 I = \int r^2 dm$
Teorema de ejes paralelos	$I = I_{CM} + Md^2$
Energía cinética rotacional	$K_R = \frac{1}{2}I\omega^2$
Momento de torsión	$\vec{\tau} = \vec{F}r; \ F \perp r$
Torque y aceleración angular	$\vec{\tau} = I\vec{\alpha}$
Equilibrio estático	$\Sigma \tau = 0$ $\Sigma F = 0$

Dinámica del movimiento circular II	
Ímpetu angular	$\vec{L} = I\vec{\omega}$ $\vec{L} = m\vec{v} \times \vec{r}$
Impulso angular	$\Delta L = \tau \Delta t$
Conservación del momento angular	$\Delta L = cte$

Elasticidad	
Esfuerzo normal	$\sigma = \frac{F}{A} \qquad F \perp A$
Deformación axial	$\Delta L = \frac{FL}{YA}$

Gravitación Universal	
Fuerza gravitacional	$\vec{F} = \frac{G m_1 m_2}{r^2}$
Energía potencial gravitacional	$U = -\frac{G m_1 m_2}{r}$
Tercera ley de Kepler	$T^2 = \frac{4\pi^2}{GM}r^3$
Velocidad de Escape	$v_{esc} = \sqrt{\frac{2GM}{R}}$

Fluidos	
Densidad	$ \rho = \frac{m}{V} $
Peso especifico	$\gamma = \frac{w}{V}$
Densidad Relativa (H ₂ 0)	$D_r = \frac{ ho}{ ho_{H_2O}}$
Presión	$P = \frac{F}{A} \qquad F \perp A$
Presión de un fluido	$P = \rho g h$
Fuerza de Empuje	$F_E = \rho g V$
Ecuación de continuidad	$A_1v_1 = A_2v_2$
Ecuación de Bernoulli	$P + \frac{1}{2}\rho v^2 + \rho gh = cte.$

Oscilaciones	
Frecuencia de oscilación	$\omega = \sqrt{\frac{k}{m}}$
Periodo	$T = \frac{2\pi}{\omega}$
Ecuación de oscilación	$x(t) = A \operatorname{sen}(\omega t + \varphi)$
Velocidad máxima	$v_{max} = \pm A \omega$
Aceleración máxima	$a_{max} = \pm A \omega^2$
Resortes en paralelo	$k_{eq} = k_1 + k_2 + \cdots k_n$
Resortes en serie	$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$

Ley de Coulomb y Campo Eléctrico	
Ley de Coulomb	$ec{F} = rac{k_e q_1 q_2}{r^2}$
Campo Eléctrico – carga puntual	$\vec{E} = \frac{k_e q}{r^2}$
Campo Eléctrico	$ec{E}=rac{ec{F}}{q}$

Ley de Gauss	
Flujo de Campo	$\Phi_E = EA\cos\theta \qquad \Phi_E = \frac{q_{int}}{\epsilon_0}$
Ley de Gauss	$\frac{q}{\epsilon_0} = \int \vec{E} dA$

Potencial Eléctrico	
Diferencia de Potencial en un campo Eléctrico uniforme	$\Delta V = \frac{\Delta U}{q} = -Ed$
Potencial en cargas puntuales	$V = \frac{k_e q}{r}$
Energía potencial eléctrica	$U = \frac{k_e q_1 q_2}{r}$

"Enfrentarse, siempre enfrentarse, es la forma de resolver el problema ¡Enfrentarse a él!" Joseph Conrad